

Cellulosa, papper och framtidens material

Fredrik Lundell

Professor i experimentell strömningsmekanik

Institutionen för Teknisk Mekanik

Ett träds struktur

- Träd, [m] 1.
- Planka, [dm] 2.
- 3. Årsring, [cm]
- Träfiber, [mm] 4.
- Fibervägg, [µm] 5.
- Nanofibriller, [nm] 6.
- 7. Cellulosamolekyler, [Å]

Ett träds struktur

- Träd, [m] 1.
- Planka, [dm] 2.
- 3. Årsring, [cm]
- Träfiber, [mm] 4.
- Fibervägg, [µm] 5.
- Nanofibriller, [nm] 6.
- 7. Cellulosamolekyler, [Å]

Papper och kartong: viktiga cellulosaprodukter

Ett bruk (Gruvön, BillerudKorsnäs)

En maskin (Voith)

Pappersprocessen

Papperstillverkning sker vid de koncentrationer som anges nedan:

Produktundersökning!

Rivtest!

Rivbeteendet i de två riktningarna var olika för att:

- 1. Pappersbitarna ej är kvadratiska
- 2. Man river inte på samma sätt i båda riktningarna
- 3. Rivet går längs den dominerande fiberriktningen
- 4. Ingen eller flera av alternativ 1-3.

Gå in på <u>www.menti.com</u> Ange koden 23 81 98 3

Pappersprocessen

Papperstillverkning sker vid de koncentrationer som anges nedan:

Inloppslåda: målet är att få en jämn fiberfördelning på viran

Vi kan nu alltså vissa produktegenskaper till inloppslådan!

Ett träds struktur

- 1. Träd, [m]
- 2. Planka, [dm]
- 3. Årsring, [cm]
- 4. Träfiber, [mm]
- 5. Fibervägg, [µm]
- 6. Nanofibriller, [nm]
- 7. Cellulosamolekyler, [Å]

Om nanofibrillen vore ett spagettistrå så vore trädet:

Om nanofibrillen vore ett spagettistrå så vore trädet:

Närbild på cellulosafiber med cellulosa nanofibriller (CNF)

Bild: Lennart Salmén

Fiberegenskaper beror på fibrillvinkel

Viktiga materialegenskaper: Styrka och styvhet

Fibrill angle

Vision

Vision

Cellulosans återkomst i high-tech tillämpningar!

Ett alternativ: strömningsfokusering

Accelerationen linjerar upp fibrillerna

Accelerationen linjerar upp fibrillerna

Dispersion-gel transition kontrolleras med salt eller syra

Energibarriär vs. pH och salthalt

Fall et al. Langmuir (2011)

Dispersion-gel transition kontrolleras med salt eller syra

Energibarriär vs. pH och salthalt

Fall et al. Langmuir (2011)

Dispersion-gel transition kontrolleras med salt eller syra

Tillverkningsprocess

Röntgenljus från synkrotronen PETRA III i Hamburg

LASH

European XFEL

Röntgenljus från synkrotronen PETRA III i Hamburg

FLASH

European XFEL

Spridningsexperiment avslöjar fibirillorientering

Upplinjeringen i kanalen kan mätas med röntgen

Spridningsmönstret deformeras tack var upplinjering!

Fibrillerna är orienterade längs filamentet!

Mycket goda mekaniska egenskaper

Sammanfattning och fortsättning

Pappperstillverkning inspirerar till processer för nya nanomaterial

Det går att göra cellulosafilament med utmärkta egenskaper

Detaljerad kunskap om processen är nödvändig för att göra riktigt bra filament från biologiska fibriller

Vi utvecklar denna kunskap genom att kombinera beräkningar och synkrotronexperiment

Tack för uppmärksamheten och tack till finansiärer och samarbetspartners:

Kungliga Tekniska Högskolan (KTH) Chalmers Tekniska Högskola (CTH) Innventia AB Deutsches Elektronen-Synchrotron (DESY) Wallenberg Wood Science Center (WWSC) Linné FLOW Centre

KTH Mechanics:
Prof. D. Söderberg
Dr. L. Prahl Wittberg
<i>Dr.</i> M. Kvick
Dr. Tomas Rosén
Dr. Nitesh Mittal
Ayaka Kamada

DESY Hamburg: Prof. S. V. Roth Dr. S. Yu Dr. G. Santoro Dr. C. Krywka Wiebke Ohms

KTH Fibre & Polymer Technology:

Prof. L. Wågberg Prof. L. Berglund Prof. M. Hamedi

<u>CTH Polymeric Materials & Composites:</u> *Prof.* M. Rigdahl

RISE:

Dr. K. Håkansson

Dr. A. Fall

Prof. T. Lindström

Dr. C. Aulin

Upplinjering mot diffusion

Finns matematiska modeller för upplinjering:

Vinkelhastighet i biaxiellt töjflöde (Jeffery 1922)

$$\dot{\theta} = \frac{\partial \theta}{\partial t^*} = -\frac{\partial w^*}{\partial z^*} \left(\frac{r_p - 1}{r_p + 1}\right) \frac{3}{2} \cos \theta \sin \theta$$

Rotationsdiffusionskoefficient: \hat{D}_r^* Slankhet: r_p Flödeshastighet:WOrienteringsfördelning: Ψ

Modellerad och mätt upplinjering

Ökad acceleration -> ökad upplinjering?

Filament från vassleprotein

